seams of softer conglomerates have been eroded into a series of troughs and scour pools. *Rana boylii* occupy the troughs and pools during most of their active season. Observations reported here occurred during oviposition, when adult *R. boylii* are generally more visible than at other times of the year. River width was 100–120 m, and water depth over the flat, about half of which is submerged, averaged 15–20 cm.

During surveys for *R. boylii* egg masses, at 1500 h on 12 June 2003, AMS and CJR observed one *A. platyrhynchos* pair (drake and hen) feeding ca. 70 m away in a bedrock pool. The *A. platyrhynchos* seemed to be probing the pool shallows. As AMS, CJR, and JC approached indirectly over ca. 3 min, the ducks dabbled in the pool, and at least twice appeared to frantically chase prey around the large (30 cm diam) cobbles bordering the pool. Following the second of these chases, the drake was seen to have a prey item in its bill. The drake tilted its head back, attempted to manipulate the prey, then lowered its head behind a rock. At this point, the observers, continuing to approach slowly, were within 50 m, and flushed the hen; the drake subsequently dropped his prey and followed. Minutes later, JC found an injured, adult male (52.5 mm SVL, 15.2 g) *R. boylii* lying upside down in the pool that the *A. platyrhynchos* had vacated. The frog’s body was flattened; its head, besides being markedly flattened, had a 3 mm puncture wound located between and just behind the eyes. The head and anterior portion of the frog was covered with small (1–5 mm) lacerations, and the skin and muscle tissue was removed from about half the left forearm (a 10 x 6 mm area). When found, the frog showed faint signs of life (weakly moving its limbs and nictitating membranes); efforts to revive it failed. The frog was preserved and deposited in the herpetology collection at Oregon State University (OSUMNH 11341).

On 22 June 2004 at 0822 h, three *A. platyrhynchos* (two drakes, one hen) were observed foraging intensively in a series of trough pools that held a breeding aggregation of male *R. boylii*. The *A. platyrhynchos* allowed CJR to approach to within 30 m before swimming away. Seven adult male *R. boylii*, all submerged or partially emergent in the shallows at that location, were captured and measured during the hour after the ducks left. Although *A. platyrhynchos* is known to breed downstream, over four years of observation, *A. platyrhynchos* have only been observed in abundance at the site during June (CJR, pers. obs.), coincident with *R. boylii* oviposition.

Mallards are omnivorous, and opportunistically exploit animal food (Nummi 1985. Suomen Riista 32:43–49; Sugden and Driver 1980. J. Wildl. Manage. 44:707–709). Invertebrates represent most animal prey in *A. platyrhynchos* diet, but the comparatively higher digestibility of many vertebrates might account for part of this relative scarcity (see Hayes and Rombough, op. cit.); frogs (e.g., *R. temporaria*) are sometimes important as prey (Mjelstad and Saetersdal, op. cit.). During some times of the year (e.g., fledging and yolking of eggs), *A. platyrhynchos* are known to seek out higher protein foods (Collias and Collias 1963. Wilson Bull. 75:6–14; Nummi 1993. Can. J. Zool. 71:49–55; Perret 1962. The spring and summer foods of the Common Mallard [Anas platyrhynchos platyrhynchos L.] in south central Manitoba. MSc Thesis, University of British Columbia, Vancouver, BC. 82 pp.). In such cases, vertebrates, notably amphibians, might provide an important protein resource.
RANACLAMITANS MEI-LNOTA (Northern Green Frog). PRE-Wildlife Resources Agency (Contract Num. ED-04-01467-00).

Research was supported by a grant to BTM from the Tennessee

dedicated to the mating mistake of the R. clamitarcs male.

Between-species amplexus may incur several costs for both participants. Besides lost feeding opportunity and increased risk for predation there is also the cost of lost reproductive effort. This is especially severe in the case observed above, since crosses be-
tween male Rana clamitans and female R. catesbeiana produce inviable hybrid offspring (Elison 1981. Dev. Biol. 81[1]:167–

Submitted by GERLINDE HÖBEL, Division of Biological
Sciences, 204 Tucker Hall, University of Missouri, Columbia, Missouri 65211, USA; e-mail: hoebelg@missouri.edu.

RANACLAMITANS MELANOTA (Northern Green Frog). PRE-
DATION. Crayfish have been known to prey on eggs and larvae of several species of amphibians (Petranka 1998. Salamanders of
the United States and Canada. Smithsonian Inst. Press, Washing-

Submitted by DAVID A. PIKE, Environmental Services Group,
Glatting-Jackson Inc., 33 East Pine Street, Orlando, Florida 32801,
USA; e-mail: dapike22@hotmail.com.


Submitted by MATTHEW L. NIEMILLER (e-mail: mln2a@mtsu.edu) and BRIAN T. MILLER, Department of Bi-
ology, Middle Tennessee State University, Murfreesboro, Tennes-
see 37132, USA.

TESTUDINES

ACTINEMYS MARMORATA (Western Pond Turtle). SIZE. The largest recorded carapace length for Actinemys marmorata is a
length of 216 mm (Stebbins 2003. A Field Guide to Western Reptiles and Amphibians, Peterson Field Guide Series; Jennings and
Hayes 1994, Amphibian and Reptile Species of Special Concern in California. California Department of Fish and Game, Sacra-
mento). I captured a male with a 223 mm carapace length and a
193 mm plastron length on 20 August 2003 during a population
study at Lake Lagunitas, Mount Tamalpais Watershed, Marin
County, California. I measured the straight-line carapace and pla-
stron length by using a caliper. The male was basking on a log
before being captured. This specimen represents the largest
Actinemys marmorata yet recorded. This study was conducted
under California Fish and Game Scientific Collection Permit no.
801154-05 and was funded by the Marin Municipal Water Dis-

Submitted by PIERRE FIDENCI, GANDA, 1 Saunders Ave,
San Anselmo, California 94960 USA; e-mail: leytenis@mail.com.

APALONE FEROX (Florida Softshell). PREDATION. While
mainly thought of as piscivores, Bald Eagles (Haliaeetus
leucocephalus) include reptiles, specifically turtles, and mammals
in their diets (Mabie et al. 1995. J. Raptor Res. 29:10–14). Bald
Eagles are reported to eat turtles of several species (Clark 1982. J.
Field Ornithol. 53:49–51; Mabie et al., op. cit.), although the lit-

erature is incomplete regarding eagle predation on the family
Trionychidae. When trionychid turtles are noted as Bald Eagle
prey, the names listed have been limited to group names and gen-

era, with no reference to species (e.g., “soft shell” or “soft shelled”
turtles; see Clark, op. cit.; Mabie et al., op. cit.).

On 16 February 2005 at Lake Nona, Orange County, Florida, I
found the shell of an Apalone ferox underneath a Bald Eagle nest.
The nest was located along the edge of the lake in a wetland in the
snag of a large pine tree. The carapace length was ca. 10 cm, but
a more accurate measurement was unavailable because of the con-
dition of the shell. The body was decayed, and the carapace had
a large gash running across it. The skull of an adult Virginia Opos-
sum (Didelphis virginiana) was also found underneath the nest.

Submitted by DAVID A. PIKE, Environmental Services Group,
Glatting-Jackson Inc., 33 East Pine Street, Orlando, Florida 32801,
USA; e-mail: dapike22@hotmail.com.