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Abstract

Mate preferences are important causes of sexual selection. They shape the

evolution of sexual ornaments and displays, sometimes maintaining genetic

diversity and sometimes promoting speciation. Mate preferences can be

challenging to study because they are expressed in animal brains and

because they are a function of the features of potential mates that are

encountered. Describing them requires taking this into account. We present

a method for describing and analysing mate preference functions, and intro-

duce a freely available computer program that implements the method. We

give an overview of how the program works, and we discuss how it can be

used to visualize and quantitatively analyse preference functions. In addi-

tion, we provide an informal review of different methods of testing mate

preferences, with recommendations for how best to set up experiments on

mate preferences. Although the program was written with mate preferences

in mind, it can be used to study any function-valued trait, and we hope

researchers will take advantage of it across a broad range of traits.

Introduction

Darwin (1871) identified a broadly fascinating topic of

modern biology when he pointed out the special nature

(and consequences) of mate preferences. Mate prefer-

ences are mental phenomena – representations of the

attractiveness of potential mates, expressed in animal

brains as the product of sensory and neural processing.

They are a kind of cognitive phenotype, and studying

them is at the forefront of the objective study of how

mental phenomena influence behaviour and decision-

making (Mendelson et al., 2016). Because mate

preferences influence mate choice decisions, they can

generate strong sexual selection (Darwin, 1871; West-

Eberhard, 1983, 2014, 2014; Andersson, 1994; Ritchie,

1996; Jennions & Petrie, 1997; Wagner, 1998; Widemo

& Sæther, 1999; Andersson & Simmons, 2006; Cotton

et al., 2006; Prum, 2012). This places the study of mate

preferences at the intersection of behavioural ecology,

neuroscience and evolutionary biology.

Mate preferences are expressed as a function of the

features of potential mates that are encountered. In

other words, they are function-valued traits (Meyer &

Kirkpatrick, 2005; Stinchcombe et al., 2012). The func-

tion-valued nature of mate preferences means that

describing them requires assessment across a range of

display trait values. When an individual encounters a

potential mate, only a fraction of its mate preference is

expressed – the part that corresponds to the potential

mate’s trait values. Confronted with another potential

mate with different features, that same individual with

that same mate preference may respond differently.

Describing mate preferences brings insight into the

causes of selection and speciation, and into how organ-

isms perceive and process some of the most salient

aspects of their environments (Ritchie, 1996; Jennions &
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Petrie, 1997; Wagner, 1998; Widemo & Sæther, 1999;

Andersson & Simmons, 2006; Chenoweth & Blows,

2006; Cotton et al., 2006; McPeek & Gavrilets, 2006;

Rodr�ıguez et al., 2006, 2013a; Sullivan-Beckers &

Cocroft, 2010). When used to characterize populations

or species, descriptions of mate preferences offer a

straightforward framework to test hypotheses about the

action of sexual selection due to mate choice (Fig. 1).

Meanwhile, studying mate preferences at the level of

individuals can shed light on the developmental and

genetic underpinnings of preferences, which is key for

assessing the generality of theoretical models of sexual

selection and speciation (Jennions & Petrie, 1997; Mead

& Arnold, 2004; Kuijper et al., 2012; Roff & Fairbairn,

2014; Sharma et al., 2016).

Here, we present a simple method for describing

and analysing mate preference functions, and a com-

puter program that implements it. The method takes a

function-valued approach, viewing the entire prefer-

ence function as the trait of interest for an individual

(or population). It then extracts some measurements

(preference function traits) from the curve that

describe the preferred sexual display values and the

shape of the curve around those preferred values

(Fig. 1). These traits are key for testing hypotheses

about mate preferences as causes of sexual selection

(Rodr�ıguez et al., 2006, 2013a). For example, peak pref-

erence indicates the display value that should have

peak fitness under sexual selection due to mate

choice; other traits indicate the expected strength of

selection (Fig. 1) (see below). The traits are also useful

for describing components of variation in mate prefer-

ences such as repeatability, heritability and plasticity

(Fowler-Finn & Rodr�ıguez, 2012a,b, 2013; Rebar &

Rodr�ıguez, 2013, 2014; Rodr�ıguez et al., 2013b.

Describing and analysing mate
preference functions

Consider an experiment that we might use to describe

mate preferences for one of our study animals, a spe-

cies of Enchenopa treehopper (Hemiptera: Membraci-

dae) (Fig. 2). Enchenopa females respond to male

advertisement signals that they find attractive with sig-

nals of their own, establishing a duet that continues

while the male searches for the female, until copula-

tion begins (Fig. 2a) (Cocroft et al., 2008). By playing

back a sample of male signals to a female and seeing

how she responds to each one, we describe her prefer-

ence across a range of male signal trait values. Such

playback experiments produce data sets with two basic

components: an independent variable encompassing

variation in a signal trait (in this example, dominant

frequency, or pitch) and a dependent variable reflect-

ing the female’s ranking of the attractiveness of the

stimuli (measured here as the number of responses

she emitted when presented with each male signal)

(Fig. 2b).

Sexual display trait values
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Fig. 1 Mate preferences represent variation in the attractiveness of sexual displays and can take various forms. In each panel, curves depict

preferences, and the histograms correspond to the distribution of sexual display traits. (a) Mate preferences may have closed shapes,

meaning that peak display attractiveness is reached at some intermediate display trait value. There can be variation in peak preference

(black vs. grey curves). (b, c) Mate preferences may also have open-ended shapes. Here too, peak preference may vary; for example, the

grey curves would have peaks at the extreme value of the test range, whereas the black curves might have a peak part-way across their

plateaus. Mate preferences may also vary in the extent of the decrease in attractiveness as displays deviate from the peak preference (d, e,

f: black vs. grey curves). When contrasted against the distribution of sexual display traits (histograms), mate preferences constitute

hypotheses about the form of sexual selection. For example, in (a), the preference in black represents stabilizing selection, whereas the

preference in grey represents directional selection. Similarly, in (b) and (c), the preferences in black and grey represent varying levels of

directional selection.
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Data such as the above can be used to generate mate

preference functions. A variety of approaches have

been used for this purpose, but they all share the goal

of producing a function that describes variation in the

attractiveness of a sexual trait. One method is to use

sets of comparisons between paired stimuli, drawing a

line linking the attractiveness of each stimulus pair to

assemble an overall shape that is inspected visually

(e.g. Jang & Greenfield, 1996; Gerhardt et al., 2000;

Murphy & Gerhardt, 2000; Shaw, 2000; Shaw & Her-

lihy, 2000; H€obel & Gerhardt, 2003; Gerhardt, 2005a,

b). Another method is to assume given function shapes,

such as linear, quadratic, logistic or sigmoidal, and fit

such functions to the data (e.g. Endler & Houde, 1995;

Brooks & Endler, 2001; Burke & Murphy, 2007). Yet

another method is to use nonparametric analyses that

do not assume any given shape (e.g. Ritchie, 1996;

Jang & Greenfield, 1998; Brooks & Endler, 2001;

Ritchie et al., 2001; Simmons et al., 2001; Reinhold

et al., 2002; Brooks et al., 2005; Rodr�ıguez et al., 2006).

We value this variety of approaches, because it allows

researchers to adjust to the biology and behaviour of

their study organism (Reinhold & Schielzeth, 2015).

Indeed, researchers often combine some of the above

approaches within a single study. For example, linear

and quadratic terms are often used for significance test-

ing in combination with nonparametric regression for

visualization (see below).

Our method adopts the philosophy of making as few

assumptions as possible about the shape of mate pref-

erences, following Schluter (1988) and Brodie et al.

(1995). We use generalized additive models (GAMs) to

fit nonparametric curves – termed cubic splines – to

the raw response data (Wood, 2006). This allows the

shape of the mate preference to be determined primar-

ily by the pattern of responses across a range of stimuli

(Fig. 2b), rather than by an a priori expectation. As a

result, there are no real restrictions to the data that

can be analysed as long as it broadly follows the stim-

ulus-response structure that we outline here. We

favour this approach because we are interested in

exploring variation in mate preferences, and thus,

fewer shape assumptions afford greater potential for

discovery. Note that although our method avoids pre-

specifying linear or quadratic shapes, it can be used in

conjunction with analyses that do use those terms (see

below).

With cubic splines, the shape of mate preferences

depends in part on a smoothing parameter (Schluter,

1988; Wood, 2006). Less smoothing produces wobblier

functions that can detect more local peaks and troughs,

whereas more smoothing produces less wobbly func-

tions that highlight only the major peaks and troughs

(Fig. 3). Current statistical software automatically

chooses a smoothing parameter that optimizes the pre-

dictive power of the function for a given data set

(Schluter, 1988; Wood, 2006, 2011). The default in our

method is to smooth out functions that are very wob-

bly – to extract the underlying function from the

(sometimes noisy) raw behavioural data – but we allow

users to adjust smoothing values when necessary (see

below). With this default, we follow the rationale from

studies of the form of selection that the true function is

more likely to be smoother than very wobbly (Schluter,

1988). We consider that this rationale should fit mate

preferences well: being based on neural activity, mate

preference functions are likely to be relatively smooth,

continuous functions, rather than very wobbly or

jagged. Even preference functions with sharp transi-

tions (e.g. step functions with thresholds) are not likely

to have the many tiny peaks of a wobbly spline

Fig. 2 Example of a mate preference function, from a study with

Enchenopa treehoppers (Hemiptera: Membracidae), which are

plant-feeding insects that communicate with plant-borne

vibrational signals (Cocroft & Rodr�ıguez, 2005). (a) Spectrogram of

male and female Enchenopa duetting signals, including 0.25-s bar

for scale. Males travel in search of females, signalling when they

reach a new plant. A female that finds a male’s signals attractive

will engage in a duet with him until he locates her (Cocroft et al.,

2008). (b) Behaviour of an Enchenopa female interacting with

playback stimuli resembling male advertisement signals. The data

points indicate the duetting signals that the female produced when

presented with each stimulus, and the curve shows the cubic

spline generated from those data points (see text), which depicts

the female’s mate preference function. The preference function

peaks at a narrow range of stimulus frequencies and drops sharply

as stimuli deviate in either direction away from those preferred

frequencies. Note that, in any one encounter with a given male,

only a portion of this female’s preference function would be

expressed. Nevertheless, the entire function is the trait of interest.
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(Fig. 3a), and their analysis can benefit from visualizing

them as somewhat smooth functions.

Mate preference function traits

Once a function has been generated, our method uses

several metrics to describe a few key aspects of varia-

tion in mate preferences (Fig. 4).

• Peak preference: the most preferred display trait value

(the point on the x-axis where the function reaches

maximum value) (Fig. 4a).

• Peak height: the maximum elevation of the function

(on the y-axis) at the preferred stimulus (Fig. 4b).

This trait is a measure of the magnitude of the

response to the preferred value. We have not used it

in prior analyses of variation in mate preferences,

but offer it here for researchers that may be inter-

ested in it.

• Tolerance: the width of the preference function at a

given height (in other words, the range of stimulus

values over which the function remains relatively

high) (Fig. 4c). The height at which we have mea-

sured tolerance in prior work is relative to the height

of the preference function (e.g. the width of the

curve one-third of the way down from the peak),

but it can also be measured at a set absolute height

on the y-axis (see Table 2).

• Preference strength: the degree to which attractiveness

falls away from peak preference as display values

change (in other words, how much the preference

‘punishes’ deviation from the peak) (Fig. 4d). Our

main measure of strength takes into account the over-

all height of the preference function, because any

given amount of drop-off from the peak is relatively

greater for preferences that are lower overall (i.e.

those with lower responsiveness; defined below). We

do, however, offer a height-independent option for

users who want a measure of strength that is indepen-

dent of responsiveness (Fig. 5). In the mate preference

literature, measures akin to our preference strength

have been termed ‘tolerance’, ‘discrimination’ or

‘choosiness’ (Gray & Cade, 1999; McPeek & Gavrilets,

2006; Bailey, 2008; Edward, 2015; Reinhold & Schiel-

zeth, 2015). We prefer ‘strength’ for several reasons.

‘Discrimination’ refers intuitively to the acuity of vari-

ation in sexual response, rather than to its magnitude;

it is thus better suited to questions about the acuity of

perception, as with the framework of just-noticeable

and just-meaningful differences (Kirkpatrick et al.,

2006). And ‘choosiness’ has convincingly been applied

to the effort an individual invests in mate assessment,

which may vary independently from the shape of

mate preferences (Jennions & Petrie, 1997). (A related

sense of the term ‘choosiness’ could be the effort

invested in obtaining a preferred mate type.) Other

authors suggest measuring the strength of mate pref-

erences with the slope of the preference function (e.g.

the slope of linear or quadratic functions) (Brooks &

Endler, 2001; Edward, 2015). We favour our measures

of strength because they do not rely on assumed

shapes for the preference function and because they

provide a direct link between the mate preference

function as a hypothesis about the form of sexual

selection due to mate choice and the standard mea-

sure of the strength of selection (Schluter, 1988).

• Responsiveness: the overall elevation of the preference

function (the mean of the y-axis values along the

function curve) (Fig. 4e). In the mate choice litera-

ture, the term ‘responsiveness’ is often used to

denote the motivation to mate, or overall sexual

receptivity (see review by Edward, 2015). In this

sense, responsiveness refers to a variable that is

broader than an aspect of mate preferences

(Jennions & Petrie, 1997; Cotton et al., 2006).

These preference traits are useful for analysing varia-

tion in mate preferences between individuals, experi-

mental treatments, populations, species, and so on (e.g.

Fowler-Finn & Rodr�ıguez, 2012a,b; Rodr�ıguez et al.,

2013b). Characterized for different populations or spe-

cies and contrasted with the distribution of male traits,

the preference traits directly relate to hypotheses about

the action of sexual selection due to mate choice (e.g.

(a) (b) (c)

Fig. 3 Example of how the smoothing parameter influences the shape of mate preference functions generated with cubic splines. Panels

(a–c) go from weaker to stronger smoothing, yielding wobblier to stiffer functions. The function in panel (b) is generated by the default

settings in PFunc and is the same as in Fig. 2b.
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Rodr�ıguez et al., 2006, 2013a). Peak preference (Fig. 4a)

predicts the display trait value that ought to occupy the

peak of fitness functions if selection was mainly due to

mate choice. Preference strength (Fig. 4b) predicts the

degree to which mate preferences may contribute to

overall selection (relative to other potential sources of

selection) (Rodr�ıguez et al., 2006, 2013a). (Note that

the strength of sexual selection will also be influenced

by mating system and mate searching strategies.) Simi-

larly, tolerance and responsiveness (Fig. 4c,e) likely

reflect aspects of the predicted strength of selection.

In our work, we have often found that strength, tol-

erance and responsiveness are correlated with each

other and independent of peak – broad preferences (i.e.

those with high tolerance) tend to be shallower than

narrow preferences, regardless of the position of the

peak (e.g. Fowler-Finn & Rodr�ıguez, 2012a,b, 2013;

Rodr�ıguez et al., 2013b). However, the relationship

between preference traits may vary among species and

experiments, and we allow estimating the preference

traits separately so that researchers may explore how

they relate to each other. For group-level functions,

there may be some additional considerations for analy-

sis. For instance, if data are combined from multiple

individuals, standardization of response scores by

researchers may be necessary (say, standardizing the

maximum response of each individual to a common

value). This of course would take meaning away from

the responsiveness and peak-height measurements.

The program: PFunc

We wrote a computer program called PFunc to describe

and analyse mate preference functions. It was devel-

oped and coded by JTK with input from all authors.

PFunc allows users to instantly visualize preference

functions and several key metrics of the curves. Users

can fine-tune individual functions when necessary and

can output their results into csv files that can be used

for further analysis and graphing in other programs.

The program is built from two main components.

The first is code written in R (R Core Team, 2017) that

handles most of the analysis. It fits curves through data

using the gam function in the mgcv package (Wood,

2006), and it outputs measurements of those curves to

the user. The second component is a graphical user

interface (GUI) (Fig. 6) that is written in Python and

uses the rpy2 package to interface with R (see

Appendix S1 for set-up and usage instructions; see

(a) (b)

Fig. 5 Examples of differences in preference function strength.

Strength is a unitless measure of the vertical range of a spline. We

offer two different measures of strength: one that is height

dependent {calculated as: [SD(response values)/mean(response

values)]2} and one that is height independent {calculated as: [SD

(response values)/(max response – min response)]}. In panel (a),

both curves have higher strength (by both measures) than the

curves in panel (b). Within each panel, both curves have the same

height-independent strength, but different height-dependent

strength (higher curves have lower height-dependent strength).

We recommend using height-dependent strength unless there is

specific reason to use the height-independent measure.

Peak preference

Peak height

Strength

Tolerance

Responsiveness

(a)

(b)

(c)

(d)

(e)

Fig. 4 Mate preference function traits. (a) Peak preference: the

preferred display trait value. (b) Peak height: the maximum

elevation of the function (on the y-axis) at the preferred stimulus.

(c) Tolerance: the width of the preference function at a given

elevation, either relative to the height of the peak or at a set

value. (d) Preference strength: the degree to which attractiveness

falls away from peak preference (see Fig. 5). (e) Responsiveness:

overall elevation of the preference function.
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Appendix S2 for the program files. The most recent ver-

sion can be downloaded from https://github.com/jocca

lor/pfunc/releases/latest).

Here, we focus on using PFunc with the GUI to make

it accessible to a broad audience. However, for those

comfortable working in the R environment, it is also

possible to run PFunc directly from the R command

line (see Appendix S1).

Getting started with PFunc

Consider an experiment in which females are presented

with a set of playback stimuli – the experiment that

yielded the data in Fig. 2, in which females were

exposed to 19 different stimuli resembling male adver-

tisement signals (in random order) that varied in pitch.

A female’s response was measured as the number of

times she responded positively to these signals over

multiple exposures (with the maximum number being

the number of times a given stimulus was played).

To analyse these data in PFunc, the user first orga-

nizes them in a spreadsheet, following one of the two

layout options described in the data layout section

below, and saves it as a csv file. Once the data are in

this format, the user can open them in PFunc and

begin analysis immediately.

PFunc plots the data points and fits cubic splines to

them. The program displays up to nine graphs per page

at a time, and the user can navigate between pages

with the controls at the bottom of the screen to access

all the graphs. Clicking on a graph brings up its infor-

mation in the control panel on the right-hand side of

the window (Fig. 6), including the smoothing parame-

ter and the trait-by-trait breakdown of the curve. Dou-

ble-clicking on a graph enlarges it for better visibility,

and double-clicking on an enlarged graph returns the

user to the previous view. Users can also view PFunc’s

running message log, which displays certain messages

and warnings from the current session

(Advanced > Show Message Log) (Fig. 6d).

Adjusting the smoothing parameter

The gam function chooses smoothing parameters based

on an algorithm that optimizes the fit of the curve

using generalized cross-validation (Schluter, 1988;

Wood, 2006, 2011). Sometimes, though, the default

smoothing parameter is not ideal for preference func-

tions; it may be so low that it makes the preference

function very wobbly, with many peaks and troughs,

or it may be so high that it makes the function per-

fectly linear. To restrict the likelihood of these extreme

outcomes, and following the philosophy that preference

functions should be neither too wobbly nor too stiff,

we limit the default smoothing parameter to a range of

0.05–5. We have found that this represents a useful

range of natural shapes. However, we have also

included the option to freely adjust the smoothing

parameter and these limits so that researchers may

explore its effect (Table 2).

The box labelled ‘Smoothing’ shows the smoothing

parameter for the currently selected curve (click to

select) (Fig. 6). Users can increase or decrease this

value either by pressing the +/� buttons or by typing in

a new value and pressing the Enter key (user-defined

smoothing parameters are not constrained by the 0.05–
5.0 range). When a smoothing parameter is altered by

the user, an indicator symbol next to the graph changes

in colour from magenta to cyan. This helps the user

keep track of which smoothing parameters have been

altered and which are at their default value. Any time

that a user wishes to revert to the default smoothing

parameter for a particular curve, they select the curve

and press the ‘Reset’ button in the Smoothing box. This

will change the indicator symbol back to magenta.

User-defined smoothing parameters persist through

single PFunc sessions and are not automatically saved if

the program is closed. However, users can save their

custom smoothing parameter values from the File

menu (File > Save Smoothing Values. . .). It is impor-

tant that this saved file remains in the csv format, or

else it may not work in future. Users can also load pre-

viously saved smoothing parameter values from the File

menu (File > Load Smoothing Values. . .). Note that if

the user makes any changes to the data file between

sessions – specifically, if they add, remove or rearrange

individuals in the data file – the saved smoothing

parameter file may not apply the correct values to the

correct individuals. We always recommend double-

checking to make sure that PFunc is handling the data

correctly. Any changes made to smoothing parameter

values will not be made permanent until the user re-

saves the smoothing parameter file. The user also has

the option of resetting all smoothing parameter values

for the session from the File menu (File > Clear

Smoothing Values).

The power to freely adjust smoothing parameters can

be helpful in a cursory exploration of data, but it is also

dangerous, because it invites temptation to interfere

with otherwise objectively fit curves. Excessive fine-

tuning of smoothing parameters has the potential to

introduce bias into the data that should be avoided at

all costs. In our work with preference functions, we

take a conservative approach to adjusting smoothing

parameters. We first establish our minimum and maxi-

mum smoothing values, and then we almost always

keep the default smoothing values that are calculated.

The few times that we have adjusted smoothing param-

eters for published data were instances where we saw

clear trends in the data that were not reflected in the

curve, and we made these changes without knowledge

of the identities of those individuals nor the groups

they belonged to. We urge all users to take a similarly

conservative approach to adjusting smoothing
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parameters. To help with this, PFunc’s default settings

display preference functions without the names of the

individuals associated with those splines. If the user

wishes to view the names, they may toggle them from

the View box in the sidebar.

Data layout

PFunc allows data to be formatted in either of two

ways: horizontally or vertically. In the horizontal

arrangement, the first column of the spreadsheet con-

tains the stimulus values (in our treehopper example,

those would be the signal frequencies of male calls

that the females are exposed to). Then, each subse-

quent column contains the responses of a different

individual to the stimuli in column 1 (Table 1a). By

comparison, the vertical arrangement contains at least

three columns: one for individual IDs, one for the

stimulus values, and one for the individual responses

(Table 1b). When choosing the vertical option, users

will be prompted to tell PFunc which columns of their

data correspond to each of the three types of informa-

tion (individual identity, stimulus value and response

score). Both data layout options work equally well,

and we leave it to the user to decide which configura-

tion works best for them. In the horizontal arrange-

ment, new individuals are added with additional

columns, whereas in the vertical arrangement, they

are added with additional rows. Note that the vertical

option gives users more flexibility when it comes to

testing different individuals against different sets of sti-

mulus values, because these values are specified for

each individual, rather than once for the whole data-

set.

For either arrangement, there must be at least three

(preferably ten or more) responses per individual (or

whatever the experimental unit is). Additionally, for

typical studies, we recommend having no more than

one response value per stimulus value per individual. If

there are multiple responses per stimulus per individ-

ual, researchers should consider consolidating them

into a single measure (e.g. an individual’s mean

response to each stimulus) or splitting the individual’s

data up by trial, depending on what the structure of

the data allows for. This is to avoid pseudoreplication,

but note that researchers can still asses the repeatability

(see Boake, 1989) of individual responses and/or pref-

erence function metrics, but would do so externally to

the program (e.g. with the preference function traits

generated by the program; Fowler-Finn & Rodr�ıguez,
2013).

Group-level preference functions

Researchers may wish to go beyond individual-level

splines and examine group-level splines, for example,

at the replicate, population or species level. Addition-

ally, group-level functions may also be useful for study-

ing organisms for which it is not possible to test

individuals repeatedly with a range of stimuli.

Table 1 Options for arranging data for PFunc. (a) The horizontal option: stimulus values are listed in the first column, and each

subsequent column contains the responses of a different individual to those stimuli (in this case, the number of times each female

responded to each stimulus value). (b) The vertical option: there are at least three columns, each containing a different type of

information: individual identity, stimulus values and the responses of individuals to each of the stimulus values. (Note that the use of four

stimulus values per individual here is purely for the sake of example. Although it is possible to use only four values in real studies, we

recommend using more.)

(a) horizontal option (b) vertical option

Stimulus (Hz) Female_1 Female_2 Female_3 Individual Stimulus (Hz) Response

180 1 1 0 Female_1 180 1

190 2 3 2 Female_1 190 2

200 3 3 4 Female_1 200 3

210 0 1 4 Female_1 210 0

Female_2 180 1

Female_2 190 3

Female_2 200 3

Female_2 210 1

Female_3 180 0

Female_3 190 2

Female_3 200 4

Female_3 210 4

Fig. 6 Screenshots of PFunc’s graphical user interface. (a) The starting interface. (b) Opening a data file. (c) Analysing multiple preference

functions. (d) The message log (accessible from Advanced > Show Message Log). (e) Creating a group-level spline (accessible from

Advanced > Construct Group-Level Spline. . .). (f) Visualization of a group-level spline.

ª 2017 EUROPEAN SOC I E TY FOR EVOLUT IONARY B IOLOGY . J . E VOL . B I O L . 3 0 ( 2 0 1 7 ) 1 6 58 – 1 6 73

JOURNAL OF EVOLUT IONARY B IO LOGY ª 20 1 7 EUROPEAN SOC I E TY FOR EVOLUT IONARY B IO LOGY

Describing mate preference functions 1665



To do this, users select Construct Group-Level Spline

from the Advanced menu, and a window pops up list-

ing all of the individuals in the data set (Fig. 6e). In

this window, users can name their new group spline

and select the individuals that they want to include in

it (select multiple individuals by clicking and dragging

or by holding down the Ctrl key while making the

selection). PFunc uses the chosen splines as new input

data to fit a single group-level spline; that is, it converts

the individual curves into many closely-spaced points,

and fits a spline through them.

The new group-level spline is added to the end of the

working data set and displayed alongside the individ-

ual-level splines (Fig. 6f). Note that this does not alter

Table 2 Explanations of settings options from the PFunc control panel.

Category Setting Details Default

View Names Toggles the display of names above each graph. Off

Data Points Toggles the display of raw data points on each graph. If the user is working

with group-level splines, this option also controls the view of the individual-

level splines that make up the group spline.

On

Peak & Tolerance Toggles the display of red and blue lines marking peak and tolerance

(respectively) on the graphs.

On

Splines Toggles the display of splines (preference functions) on the graphs. On

Standard Error Toggles the display of dashed lines on either side of the spline, representing

the range of �1 standard error, as calculated by the gam function. This

standard error is a measure of how well the spline fits the data, not a

measure of the spread of the data.

Off

Smoothing Limits On/off Smoothing Limits restricts the default smoothing parameter to a certain range.

This is useful for avoiding splines that are either too wobbly or too stiff, but

the user has the option of toggling it off.

On

Min Sets the minimum value for default smoothing parameters (but the user can

manually adjust the smoothing parameter beyond this limit).

0.05

Max Like min, but for the maximum value. 5.0

Find Local Peak On/off Gives users the option to focus on specific regions of the splines that contain

secondary peaks of interest (e.g. the lower left-hand corner of Fig. 6c).

PFunc first searches for a peak between the min and max values (below). If it

finds a peak, then it uses it. If not, then it expands its search across the

entire spline.

Off

Min Sets the lower boundary for the search for local peaks.

Max Sets the upper boundary for the search for local peaks.

Tolerance Options There are two options for measuring tolerance: relative or absolute.

• In the relative option, tolerance is the width of the curve at a cer-

tain proportion down from the peak. To select the relative option,

click the radio button next to ‘Drop from peak’.

• In the absolute option, tolerance is measured at a specified y-value,

regardless of the height of the peak. To select the absolute option,

click the radio button next to ‘At set value’.

Relative

Drop from peak Used for calculating relative tolerance. Controls how far down on the spline

that PFunc measures tolerance (the width of the curve). Drop is expressed

as a proportion of the distance from the peak of the spline to the floor (see

below). It can be written as either a decimal or a fraction.

1/3

Floor Used for calculating relative tolerance. Adjusts the height of the baseline from

which tolerance is measured. In calculating tolerance, the floor is the lower

limit, whereas the peak height of the curve is the upper limit, and tolerance is

measured as a proportion of the distance between the two.

0

At set value Used for calculating absolute tolerance. This value defines the point on the y-

axis at which tolerance for all splines is measured.

1

Mode Controls how PFunc handles cases where there are multiple peaks along the

spline that are above the tolerance line (e.g. the lower left-hand corner of

Fig. 6c). If mode is set to Broad, then tolerance is the sum of all the

tolerance segments across the range of stimulus values. If mode is set to

Strict, tolerance is only the width of the curve under the highest peak.

Broad

Strength Height Dependence Controls whether strength depends on the height of the spline (i.e.

responsiveness) (Fig. 5)

Height dependent
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the original data file. The new graph displays the

group-level spline as well as the individual splines that

are part of the group. The visibility of the individual

splines can be toggled with the Data Points checkbox

under the View options (Table 2). Group-level splines

behave just as individual splines do, and all of the set-

tings and output options that apply to individuals also

apply to groups.

We recommend using lower smoothing parameters

for group splines than for individual splines. As group-

level splines are themselves based on smooth curves,

they tend to be relatively smooth to begin with, even

with very small values for the smoothing parameter.

Restricting group smoothing parameters to the same

range as individual splines may result in overly stiff

group-level curves.

Changing settings

We have chosen the default settings that we think,

based on our experience, will work best across a

broad range of experimental set-ups. However, we

include a variety of options in PFunc for the user to

adjust according to their needs. Settings can be

adjusted from the control panel on the right-hand

side of the screen (see Table 2 for details). Users can

save the settings configuration of their current session

for future use from the File menu (File > Save Cur-

rent Settings). Users can restore saved settings from a

previous session (File > Load Previous Settings), or

they can revert to the default settings (File > Restore

Default Settings).

Saving and exporting the analyses

PFunc comes with several options for exporting data:

(i) the user can export a pdf of all the preference

function graphs drawn from the data file (File > Out-

put Spline Figures. . .). (ii) The user can export a

spreadsheet displaying the five preference traits plus

the smoothing values for all the curves of every indi-

vidual in the data set (File > Output Spline Sum-

maries. . .). (iii) The user can export a spreadsheet

containing values of points that make up the curves

of the preference functions for all individuals

(File > Output Spline Points. . .). This option is useful

for those who wish to plot the splines in a separate

program to make figures for publications. It is also

useful for those who want to save group-level splines.

(iv) The user can export a spreadsheet containing the

tolerance points for all individuals (File > Output Tol-

erance Points. . .). Tolerance points are the x-values

that correspond to the boundaries of where tolerance

is measured. This can be useful for plotting preference

functions in other programs or for studies where these

values are points of interest.

Discussion

We have presented a simple and efficient method for

analysing mate preference functions, and a program

that implements it on many individuals at a time. We

now comment on some decisions that researchers have

to make for the purpose of conducting the experiments

that generate the data that can be used with our

method.

The assay of attractiveness

Any method for describing mate preferences is only as

good as the assay of attractiveness on which it is based.

The decision of which assay to use should be based on

the biology and behaviour of the study species (Reinhold

& Schielzeth, 2015). A good assay consists of a specialized

behaviour or response performed only in the context of

mate acceptance, so that there is minimal risk of count-

ing incidental or spurious responses. A classic example of

an assay used in studies of mate preference is the phono-

taxis behaviour involved in pair formation in many anu-

rans and orthopterans, whereby females approach

signalling males or playback stimuli that resemble sig-

nalling males (Gerhardt & Huber, 2002; Greenfield,

2002). In species where pair formation involves male–
female signal exchanges (duetting), a simple and biologi-

cally relevant assay is whether females reply with their

own signals to males or to playback stimuli (e.g. Parri

et al., 2002; Rodr�ıguez et al., 2004; Derlink et al., 2014;

Reichert & Ronacher, 2015). Other species may engage

in other types of back-and-forth interaction between the

sexes that present cues of likely mate acceptance (e.g.

the adoption of a solicitation posture; Patricelli et al.,

2002, 2006). Such interactions may offer useful assays

for studies of mate preferences, and are drastically under-

studied (Rodr�ıguez, 2015).
When it comes to quantifying acceptance behaviour,

there are several options for what the response variable

could be. (i) It could be the number of times an indi-

vidual responds to each stimulus value (expressed

either as a raw count or as a proportion of total expo-

sures to each stimulus). (ii) In the case of choice trials

(discussed below), it could be the proportion of times

one stimulus was preferred over another. (iii) It could

be based on the latency to mate acceptance. (iv) It

could be some other score of acceptance. Note that

even if the structure of the data would be described as

binomial (e.g. with only 1 and 0 for response/no

response) or as Poisson (e.g. with only a possibility of

0, 1, 2 or 3 responses from an individual tested three

times per stimulus), the spline that PFunc fits will be in

the Gaussian family. The goal is to capture the smooth

function (the cognitive phenotype) that underlies the

behaviour, rather than reflect the particularities of the

experimental assay.
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We offer a note of caution about assays based on

realized mate choice decisions (e.g. whether a mating

occurs or not). Such assays may have restricted useful-

ness in the study of mate preferences. One reason for

this is that preferences and decisions are different cog-

nitive phenotypes (Cotton et al., 2006; Mendelson

et al., 2016): preferences influence decisions, but are

distinct from them. Another reason is that whether

mating occurs or not is the outcome of male–female

interactions that are influenced by more variables than

the preference of one individual. A mate choice deci-

sion represents not only whether a female found a

male attractive but also whether he found her attrac-

tive, for how long and with what intensity he courted

her, the presence and distribution of other potential

mates and so on. In other words, a realized mate

choice decision arises from the expression of a mate

preference but is also influenced by multiple inputs

from the social context in which it is expressed. Addi-

tionally, individuals may accept a mate whose features

are not the most preferred (not at the peak of the pref-

erence) but fall within an acceptable range, which con-

founds mate preference functions with other factors

that influence mate choice decisions, such as mate

sampling strategies, choosiness and absolute versus rel-

ative criteria for mate acceptance (Jennions & Petrie,

1997; Widemo & Sæther, 1999; Brandt et al., 2005;

Cotton et al., 2006).

Having said the above, we acknowledge that assays

based on realized mate choice decisions may be the

only suitable option for some species. For example, it

may only be logistically feasible or ethically permissi-

ble to study some species in the field. Other species

may not respond well to artificial stimuli, may not

produce an obvious mate-acceptance response or may

not thrive in laboratory settings. In such cases,

researchers may only be able to observe realized deci-

sions such as nesting pairings. One solution to the

above limitation may be to observe multiple decisions

for each individual, each with different potential

mates, in order to isolate the contribution of that indi-

vidual’s preferences to the outcome of interactions

with the different males.

What we wish to emphasize is that the assay of sex-

ual response should pinpoint as much as possible the

mate preference as an individual’s trait, and distinguish

it as much as possible from variation due to inputs

other than the features of the stimuli or males that the

individual is responding to. With this consideration in

mind, we would argue against conceptualizing the

assay of attractiveness as a measure of the resources

invested in reproduction with a mate (cf. Edward,

2015). The resources invested in reproduction reflect

choosiness, realized mate choice decisions and decisions

made after mate choice (Jennions & Petrie, 1997)

rather than the cognitive phenotypes that influence

those decisions.

The range of variation in the display trait over which
to assess mate preferences

Characterizing mate preferences requires assaying

attractiveness over an appropriate range of variation in

sexual traits. To capture the full shape of the prefer-

ence, we recommend that stimuli should not only span

the natural range of variation in the trait, but exceed it

somewhat. This is because assessing the attractiveness

of phenotypes beyond the population range provides a

more complete description of the selective landscape as

determined by mate preferences (cf. Schluter, 1988).

Too narrow a range may underestimate the amount of

variation in the attractiveness of displays – it may not

capture the full shape of the preference, which might

yield misleading expectations about the form of sexual

selection due to mate choice. On the other hand, an

excessively broad range may detract from biological

interpretability, although even then it might reveal hid-

den preferences or supernormal responses (Arak &

Enquist, 1993; Gray et al., 2016). This is a decision that

researchers have to make according to the biology of

their study species and the scope of their research ques-

tions.

Additionally, researchers will have to decide on an

appropriate number of stimuli to test. The use of more

stimuli (more stimulus values) increases the resolution

of the splines, but it also means more trials for each

individual, which can lead to fatigue or habituation.

Therefore, one must strike a balance between the reso-

lution of their preference functions and the tolerance of

individual animals to repeated testing. We recommend

using at least 10 different stimuli. Although PFunc can

handle data with fewer than 10 stimulus values, the

resolution of the preference functions may be reduced,

and users may find the need to relax the limits on

smoothing parameters.

A related consideration is the distribution of stimulus

values along the range to be tested. Stimuli may be

spread evenly along the range (say, from 100 to 200 Hz

in steps of 10 Hz) (e.g. Rodr�ıguez et al., 2006), or they

may cover some parts of the range more densely than

others (say, finer steps near the suspected peak in order

to pinpoint it more precisely) (e.g. Fowler-Finn &

Rodr�ıguez, 2012a,b).
Researchers should also consider how best to handle

a data set that has missing values. In general, function-

valued approaches have the advantage of being robust

to missing data (Stinchcombe et al., 2012). However,

we consider that the ideal situation is one in which

each individual is tested on every single stimulus value

(recognizing that the reality of behavioural research

with live animals may make this difficult to achieve).

Individuals missing many data points should probably

be excluded from the analysis entirely. Individuals

missing only a few data points may or may not have an

impact on the final analysis, depending on where those
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points lie. If an individual is missing data in the middle

of the test range, other points surrounding the missing

value inform the shape of the curve (Fig. 7a,b). But a

missing data point on the edge of the test range may

lead to misinterpretation of the results, especially for

preference functions that appear to be open-ended

(Fig. 7c,d).

Design of mate preference experiments: choice and
no-choice trials

A wide variety of methods are available for conducting

playback experiments. So-called choice trials present

individuals with two or more options or stimuli, and

assemble a series of such trials to construct an overall

preference function across stimulus pairs (e.g. Jang &

Greenfield, 1996; Gerhardt et al., 2000). Other methods

use series of such choice trials to generate attractiveness

scores for individual stimuli, and then use a set of those

scores to construct the preference function (e.g. Ritchie,

1996; Simmons et al., 2001; Brooks et al., 2005). On the

other hand, so-called no-choice trials (also termed sin-

gle-stimulus trials) present one stimulus at a time and

measure the response to each stimulus (e.g. Fig. 2;

Rodr�ıguez et al., 2006).

There is reason to think that choice and no-choice

designs may require different interpretation. In choice

trials, the response to one stimulus depends on the rel-

ative attractiveness of the other stimulus in the pair,

and this may influence the outcome of trials. Addition-

ally, choice trials reflect not only mate preferences but

also variation in investment in sampling (Wagner,

1998; Beckers & Wagner, 2011). These confounding

factors may make it harder to capture the true shape of

the mate preference with choice designs, making no-

choice designs often preferable. (On the flip side, the

sequence of stimuli in no-choice designs may influence

their relative attractiveness, and sequences should be
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Fig. 7 Missing data points can have either a small effect (a, b) or a large effect (c, d) on the interpretation of splines. (a) A spline fit

through a hypothetical data set with a single missing value in the middle of the range (represented by the grey box). The arrow indicates

the peak. (b) The same data set with the highest possible and the lowest possible values filled in for the missing data point (open circles).

Splines fit through the two possible extremes have the same general shape, and the peak varies by < 5% of the range in either direction

compared to the peak in (a). Meanwhile, (c) shows a spline fit through data that is missing the response to the highest stimulus. This

preference function appears to be open-ended, but if it is compared with other individuals in the same experiment, its peak comes out to

be 190 instead of the extreme value of 200, which other open-ended preferences will have. Furthermore, this missing value holds more

weight in determining the shape of the spline (d). The spline could end up being either open-ended or closed, and the peak varies by 10%

or more of the range in either direction compared to the peak in (c).
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randomized.) There is evidence, however, that well-

designed choice and no-choice experiments reach simi-

lar conclusions (Bush et al., 2002), although they may

vary in the strength of the mate preferences that they

estimate (Dougherty & Shuker, 2015).

On significance testing

Here, we have focused on generating preference func-

tions, visualizing them and extracting metrics to charac-

terize them. One component of data analysis that our

program leaves out is significance testing. For instance,

to compare the mate preferences for a given signal trait

between two species, PFunc will plot them and analyse

them in terms of the preference traits described above.

Each of the traits can then be compared between the

two species with simple tests using commonly available

statistical programs (e.g. one-way ANOVA to test for a

species difference in peak preference, with a sample of

individuals for each species). However, one may also

want significance tests for a difference in the overall

preference functions of the two species. For this pur-

pose, some researchers have used statistical models

with linear and quadratic terms for the stimulus fea-

tures, in combination with visualization using nonpara-

metric regression (such as with cubic splines) (e.g.

Brooks & Endler, 2001; Brooks et al., 2005; Bentsen

et al., 2006; Rodr�ıguez et al., 2006; Bailey, 2008; Ger-

hardt & Brooks, 2009). We have found this combina-

tion of approaches to be useful. For the above species

comparison of the preferences of two species, the statis-

tical model could include the following terms: a term

for species, linear and quadratic terms for the values of

the stimuli, and interactions between the species term

and the linear and quadratic stimulus frequency terms

(e.g. Rodr�ıguez et al., 2006). The species 9 linear term

would test for differences in the linear components of

the preferences, and the species 9 quadratic term

would test for differences in the curvilinear compo-

nents. Similar models can be used to compare prefer-

ences not only between species but also between

treatments (e.g. Fowler-Finn & Rodr�ıguez, 2012a,b).

(Note that when each individual contributes a prefer-

ence function to the analysis – when each individual

was tested multiple times with different stimuli – indi-

vidual ID should be included as a random factor in the

statistical model to avoid pseudoreplication).

Univariate and multivariate mate preference
functions

The method we present here is based on the manipula-

tion of only one stimulus variable at a time, rather than

multiple stimulus variables. We recognize that percep-

tion and selection often involve multiple aspects of dis-

play phenotypes, and there are methods of analysis

available to explore attractiveness and fitness surfaces

(e.g. Brodie et al., 1995; Brooks et al., 2005; Bentsen

et al., 2006; Ower et al., 2013; Hennig et al., 2016). In

some cases, however, the univariate approach may be

most appropriate for how the study organism processes

stimuli. For example, females of some cricket species

process male signal pulse rate as a single (effectively

univariate) trait, despite the fact that pulse rate is in

fact a compound trait determined by both pulse dura-

tion and interpulse duration (Hennig et al., 2014; Blan-

kers et al., 2015). Another reason the univariate

approach is broadly useful is that different display traits

are often associated with mate preferences of different

shapes, so that analysing display–preference relation-

ships on a trait-by-trait basis enhances the explanatory

power of tests of the contribution of mate preferences

to sexual selection and display divergence (Rodr�ıguez
et al., 2006, 2013a).

Broader applicability of the method

Nonbehavioural mate preferences
In this paper, we have focused on mate preferences as

cognitive phenotypes (Mendelson et al., 2016). How-

ever, there are many other types of sexual response

that can be studied using the method that we outline

here. Indeed, any response of interest may be used as

the y-axis to characterize the causes of mate choice at

any stage of the reproductive process.

As above, our main suggestion would be to use

assays of sexual response that approach as closely as

possible the focal individual’s trait without influence

from the interaction with mating partners. For exam-

ple, we would consider whether females are induced to

expel previously stored sperm by genitalic stimuli (von

Helversen & von Helversen, 1991) to be a better assay

than those same females’ fertilization patterns, because

the former better approximates the female function-

valued trait of interest. Having said that, we recognize

that this goal may be challenging for studies of mate

preferences at stages of the reproductive process subse-

quent to pair formation, such as studies of cryptic mate

choice – it may sometimes be impossible to avoid using

interacting individuals in mate preference trials. In such

cases, observing interactions of each female with a sam-

ple of males may help characterize her preferences (e.g.

Sirot et al., 2007).

Other function-valued traits
Our method is also applicable to any function-valued

trait, regardless of whether it involves mate prefer-

ences or behaviour. For instance, it could be used to

study variation in developmental trajectories or in

plasticity across a range of environmental conditions,

as long as the x-axis variable is continuous (Izem &

Kingsolver, 2005; Kingsolver & Gomulkiewicz, 2003;

Meyer & Kirkpatrick, 2005; Stinchcombe et al., 2012;

Murren et al., 2014; Kingsolver et al., 2015). We
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suggest that the main consideration in deciding

whether to use our method should be whether

researchers desire to make assumptions about the

shape of the functions of interest. We hope that this

approach will be broadly useful.
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